Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(16): eadk4855, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630816

RESUMEN

Serotonin [5-hydroxytryptamine (5-HT)] acts via 13 different receptors in humans. Of these receptor subtypes, all but 5-HT1eR have confirmed roles in native tissue and are validated drug targets. Despite 5-HT1eR's therapeutic potential and plausible druggability, the mechanisms of its activation remain elusive. To illuminate 5-HT1eR's pharmacology in relation to the highly homologous 5-HT1FR, we screened a library of aminergic receptor ligands at both receptors and observe 5-HT1eR/5-HT1FR agonism by multicyclic drugs described as pan-antagonists at 5-HT receptors. Potent agonism by tetracyclic antidepressants mianserin, setiptiline, and mirtazapine suggests a mechanism for their clinically observed antimigraine properties. Using cryo-EM and mutagenesis studies, we uncover and characterize unique agonist-like binding poses of mianserin and setiptiline at 5-HT1eR distinct from similar drug scaffolds in inactive-state 5-HTR structures. Together with computational studies, our data suggest that these binding poses alongside receptor-specific allosteric coupling in 5-HT1eR and 5-HT1FR contribute to the agonist activity of these antidepressants.


Asunto(s)
Mianserina , Serotonina , Humanos , Mianserina/farmacología , Antidepresivos , Receptores de Serotonina/metabolismo , Transducción de Señal
3.
bioRxiv ; 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37986777

RESUMEN

Serotonin (5-hydroxytryptamine, 5-HT) acts via 13 different receptors in humans. Of these receptor subtypes, all but 5-HT1eR have confirmed roles in native tissue and are validated drug targets. Despite 5-HT1eR's therapeutic potential and plausible druggability, the mechanisms of its activation remain elusive. To illuminate 5-HT1eR's pharmacology in relation to the highly homologous 5-HT1FR, we screened a library of aminergic receptor ligands at both receptors and observe 5-HT1e/1FR agonism by multicyclic drugs described as pan-antagonists at 5-HT receptors. Potent agonism by tetracyclic antidepressants mianserin, setiptiline, and mirtazapine suggests a mechanism for their clinically observed anti-migraine properties. Using cryoEM and mutagenesis studies, we uncover and characterize unique agonist-like binding poses of mianserin and setiptiline at 5-HT1eR distinct from similar drug scaffolds in inactive-state 5-HTR structures. Together with computational studies, our data suggest that these binding poses alongside receptor-specific allosteric coupling in 5-HT1eR and 5-HT1FR contribute to the agonist activity of these antidepressants.

4.
Biochem Pharmacol ; 216: 115776, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37659739

RESUMEN

The farnesoid-x-receptor (FXR) and the G protein bile acid activated receptor (GPBAR)1 are two bile acid activated receptors highly expressed in entero-hepatic, immune, adipose and cardiovascular tissues. FXR and GPBAR1 are clinically validated targets in the treatment of metabolic disorders and FXR agonists are currently trialled in patients with non-alcoholic steato-hepatitis (NASH). Results of these trials, however, have raised concerns over safety and efficacy of selective FXR ligands suggesting that the development of novel agent designed to impact on multiple targets might have utility in the treatment of complex, multigenic, disorders. Harnessing on FXR and GPBAR1 agonists, several novel hybrid molecules have been developed, including dual FXR and GPBAR1 agonists and antagonists, while exploiting the flexibility of FXR agonists toward other nuclear receptors, dual FXR and peroxisome proliferators-activated receptors (PPARs) and liver-X-receptors (LXRs) and Pregnane-X-receptor (PXR) agonists have been reported. In addition, modifications of FXR agonists has led to the discovery of dual FXR agonists and fatty acid binding protein (FABP)1 and Leukotriene B4 hydrolase (LTB4H) inhibitors. The GPBAR1 binding site has also proven flexible to accommodate hybrid molecules functioning as GPBAR1 agonist and cysteinyl leukotriene receptor (CYSLTR)1 antagonists, as well as dual GPBAR1 agonists and retinoid-related orphan receptor (ROR)γt antagonists, dual GPBAR1 agonist and LXR antagonists and dual GPBAR1 agonists endowed with inhibitory activity on dipeptidyl peptidase 4 (DPP4). In this review we have revised the current landscape of FXR and GPBAR1 based hybrid agents focusing on their utility in the treatment of metabolic associated liver disorders.


Asunto(s)
Ácidos y Sales Biliares , Enfermedades Metabólicas , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Citoplasmáticos y Nucleares , Hígado/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico
5.
Molecules ; 28(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985811

RESUMEN

Compounds featuring a 1,2,4-oxadiazole core have been recently identified as a new chemotype of farnesoid X receptor (FXR) antagonists. With the aim to expand this class of compounds and to understand the building blocks necessary to maintain the antagonistic activity, we describe herein the synthesis, the pharmacological evaluation, and the in vitro pharmacokinetic properties of a novel series of 1,2,4-oxadiazole derivatives decorated on the nitrogen of the piperidine ring with different N-alkyl and N-aryl side chains. In vitro pharmacological evaluation showed compounds 5 and 11 as the first examples of nonsteroidal dual FXR/Pregnane X receptor (PXR) modulators. In HepG2 cells, these compounds modulated PXR- and FXR-regulated genes, resulting in interesting leads in the treatment of inflammatory disorders. Moreover, molecular docking studies supported the experimental results, disclosing the ligand binding mode and allowing rationalization of the activities of compounds 5 and 11.


Asunto(s)
Receptores de Esteroides , Receptor X de Pregnano , Receptores de Esteroides/metabolismo , Receptores Citoplasmáticos y Nucleares , Simulación del Acoplamiento Molecular , Biblioteca de Genes
6.
ACS Omega ; 8(6): 5983-5994, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816679

RESUMEN

Retinoic acid receptor-related orphan receptor γ-t (RORγt) and GPBAR1, a transmembrane G-protein-coupled receptor for bile acids, are attractive drug targets to develop clinically relevant small modulators as potent therapeutics for autoimmune diseases. Herein, we designed, synthesized, and evaluated several new bile acid-derived ligands with potent dual activity. Furthermore, we performed molecular docking and MD calculations of the best dual modulators in the two targets to identify the binding modes as well as to better understand the molecular basis of the inverse agonism of RORγt by bile acid derivatives. Among these compounds, 7 was identified as a GPBAR1 agonist (EC50 5.9 µM) and RORγt inverse agonist (IC50 0.107 µM), with excellent pharmacokinetic properties. Finally, the most promising ligand displayed robust anti-inflammatory activity in vitro and in vivo in a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis.

7.
Hepatology ; 78(1): 26-44, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36107019

RESUMEN

BACKGROUND AND AIM: Drug-induced liver injury (DILI) is a common disorder that involves both direct liver cell toxicity and immune activation. The bile acid receptor, G-protein-coupled bile acid receptor 1 (GPBAR1; Takeda G-protein-coupled receptor 5 [TGR5]), and cysteinyl leukotriene receptor (CYSLTR) 1 are G-protein-coupled receptors activated by bile acids and leukotrienes, exerting opposite effects on cell-to-cell adhesion, inflammation, and immune cell activation. To investigate whether GPBAR1 and CYSLTR1 mutually interact in the development of DILI, we developed an orally active small molecule, CHIN117, that functions as a GPBAR1 agonist and CYSLTR1 antagonist. APPROACH AND RESULTS: RNA-sequencing analysis of liver explants showed that acetaminophen (APAP) intoxication positively modulates the leukotriene pathway, CYSLTR1, 5-lipoxygenase, and 5-lipoxygenase activating protein, whereas GPBAR1 gene expression was unchanged. In mice, acute liver injury induced by orally dosing APAP (500 mg/kg) was severely exacerbated by Gpbar1 gene ablation and attenuated by anti-Cysltr1 small interfering RNA pretreatment. Therapeutic dosing of wild-type mice with CHIN117 reversed the liver damage caused by APAP and modulated up to 1300 genes, including 38 chemokines and receptors, that were not shared by dosing mice with a selective GPBAR1 agonist or CYSLTR1 antagonist. Coexpression of the two receptors was detected in liver sinusoidal endothelial cells (LSECs), monocytes, and Kupffer cells, whereas combinatorial modulation of CYSLTR1 and GPBAR1 potently reversed LSEC/monocyte interactions. CHIN117 reversed liver damage and liver fibrosis in mice administered CCl 4 . CONCLUSIONS: By genetic and pharmacological approaches, we demonstrated that GPBAR1 and CYSLTR1 mutually interact in the development of DILI. A combinatorial approach designed to activate GPBAR1 while inhibiting CYSLTR1 reverses liver injury in models of DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo , Células Endoteliales/metabolismo , Acetaminofén/toxicidad , Receptores Acoplados a Proteínas G/metabolismo , Hepatopatías/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Leucotrienos/metabolismo , Proteínas de Unión al GTP/metabolismo
8.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555144

RESUMEN

Fatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation. Our study provides a rationale for the design of non-competitive potent FAAH inhibitors for the treatment of neuropathic pain and chronic inflammation.


Asunto(s)
Endocannabinoides , Neuralgia , Humanos , Endocannabinoides/metabolismo , Neuralgia/tratamiento farmacológico , Amidohidrolasas/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Inflamación/tratamiento farmacológico , Simulación de Dinámica Molecular
9.
Front Pharmacol ; 13: 858137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35559268

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two highly prevalent human diseases caused by excessive fat deposition in the liver. Although multiple approaches have been suggested, NAFLD/NASH remains an unmet clinical need. Here, we report the discovery of a novel class of hybrid molecules designed to function as cysteinyl leukotriene receptor 1 (CysLT1R) antagonists and G protein bile acid receptor 1 (GPBAR1/TGR5) agonists for the treatment of NAFLD/NASH. The most potent of these compounds generated by harnessing the scaffold of the previously described CystLT1R antagonists showed efficacy in reversing liver histopathology features in a preclinical model of NASH, reshaping the liver transcriptome and the lipid and energy metabolism in the liver and adipose tissues. In summary, the present study described a novel orally active dual CysLT1R antagonist/GPBAR1 agonist that effectively protects against the development of NAFLD/NASH, showing promise for further development.

10.
J Chem Inf Model ; 62(1): 196-209, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34914393

RESUMEN

The angiotensin-converting enzyme II (ACE2) is a key molecular player in the regulation of vessel contraction, inflammation, and reduction of oxidative stress. In addition, ACE2 has assumed a prominent role in the fight against the COVID-19 pandemic-causing virus SARS-CoV-2, as it is the very first receptor in the host of the viral spike protein. The binding of the spike protein to ACE2 triggers a cascade of events that eventually leads the virus to enter the host cell and initiate its life cycle. At the same time, SARS-CoV-2 infection downregulates ACE2 expression especially in the lung, altering the biochemical signals regulated by the enzyme and contributing to the poor clinical prognosis characterizing the late stage of the COVID-19 disease. Despite its important biological role, a very limited number of ACE2 activators are known. Here, using a combined in silico and experimental approach, we show that ursodeoxycholic acid (UDCA) derivatives work as ACE2 activators. In detail, we have identified two potent ACE2 ligands, BAR107 and BAR708, through a docking virtual screening campaign and elucidated their mechanism of action from essential dynamics of the enzyme observed during microsecond molecular dynamics calculations. The in silico results were confirmed by in vitro pharmacological assays with the newly identified compounds showing ACE2 activity comparable to that of DIZE, the most potent ACE2 activator known so far. Our work provides structural insight into ACE2/ligand-binding interaction useful for the design of compounds with therapeutic potential against SARS-CoV-2 infection, inflammation, and other ACE2-related diseases.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Antivirales , Ácidos y Sales Biliares , Humanos , Pandemias , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 1099715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619585

RESUMEN

G Protein-Coupled Receptors (GPCRs) are a large family of membrane proteins with pluridimensional signaling profiles. They undergo ligand-specific conformational changes, which in turn lead to the differential activation of intracellular signaling proteins and the consequent triggering of a variety of biological responses. This conformational plasticity directly impacts our understanding of GPCR signaling and therapeutic implications, as do ligand-specific kinetic differences in GPCR-induced transducer activation/coupling or GPCR-transducer complex stability. High-resolution experimental structures of ligand-bound GPCRs in the presence or absence of interacting transducers provide important, yet limited, insights into the highly dynamic process of ligand-induced activation or inhibition of these receptors. We and others have complemented these studies with computational strategies aimed at characterizing increasingly accurate metastable conformations of GPCRs using a combination of metadynamics simulations, state-of-the-art algorithms for statistical analyses of simulation data, and artificial intelligence-based tools. This minireview provides an overview of these approaches as well as lessons learned from them towards the identification of conformational states that may be difficult or even impossible to characterize experimentally and yet important to discover new GPCR ligands.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Transducción de Señal , Inteligencia Artificial
12.
J Med Chem ; 64(22): 16512-16529, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34767347

RESUMEN

G-protein-coupled receptors (GPCRs) are the molecular target of 40% of marketed drugs and the most investigated structures to develop novel therapeutics. Different members of the GPCRs superfamily can modulate the same cellular process acting on diverse pathways, thus representing an attractive opportunity to achieve multitarget drugs with synergic pharmacological effects. Here, we present a series of compounds with dual activity toward cysteinyl leukotriene receptor 1 (CysLT1R) and G-protein-coupled bile acid receptor 1 (GPBAR1). They are derivatives of REV5901─the first reported dual compound─with therapeutic potential in the treatment of colitis and other inflammatory processes. We report the binding mode of the most active compounds in the two GPCRs, revealing unprecedented structural basis for future drug design studies, including the presence of a polar group opportunely spaced from an aromatic ring in the ligand to interact with Arg792.60 of CysLT1R and achieve dual activity.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores de Leucotrienos/efectos de los fármacos , Animales , Colitis/tratamiento farmacológico , Humanos , Leucotrieno D4/farmacología , Macrófagos/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Unión Proteica , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leucotrienos/metabolismo , Relación Estructura-Actividad
13.
EMBO J ; 40(10): e106503, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33934390

RESUMEN

The primary cilium is a microtubule-based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X-linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin-proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G-protein-coupled receptor (GPCR)-cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2-UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non-phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Oryzias , Transducción de Señal/genética , Transducción de Señal/fisiología , Técnicas del Sistema de Dos Híbridos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
Biochem Pharmacol ; 188: 114564, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33872570

RESUMEN

The severe acute respiratory syndrome (SARS)-CoV-2 is the pathogenetic agent of Corona Virus Induced Disease (COVID)19. The virus enters the human cells after binding to the angiotensin converting enzyme (ACE)2 receptor in target tissues. ACE2 expression is induced in response to inflammation. The colon expression of ACE2 is upregulated in patients with inflammatory bowel disease (IBD), highlighting a potential risk of intestinal inflammation in promoting viral entry in the human body. Because mechanisms that regulate ACE2 expression in the intestine are poorly understood and there is a need of anti-SARS-CoV-2 therapies, we have settled to investigate whether natural flavonoids might regulate the expression of Ace2 in intestinal models of inflammation. The results of these studies demonstrated that pelargonidin activates the Aryl hydrocarbon Receptor (AHR) in vitro and reverses intestinal inflammation caused by chronic exposure to high fat diet or to the intestinal braking-barrier agent TNBS in a AhR-dependent manner. In these two models, development of colon inflammation associated with upregulation of Ace2 mRNA expression. Colon levels of Ace2 mRNA were directly correlated with Tnf-α mRNA levels. Molecular docking studies suggested that pelargonidin binds a fatty acid binding pocket on the receptor binding domain of SARS-CoV-2 Spike protein. In vitro studies demonstrated that pelargonidin significantly reduces the binding of SARS-CoV-2 Spike protein to ACE2 and reduces the SARS-CoV-2 replication in a concentration-dependent manner. In summary, we have provided evidence that a natural flavonoid might hold potential in reducing intestinal inflammation and ACE2 induction in the inflamed colon in a AhR-dependent manner.


Asunto(s)
Enzima Convertidora de Angiotensina 2/biosíntesis , Antocianinas/farmacología , Descubrimiento de Drogas/métodos , Regulación Enzimológica de la Expresión Génica , Receptores de Hidrocarburo de Aril/agonistas , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Animales , Antocianinas/química , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Hidrocarburo de Aril/metabolismo , SARS-CoV-2/metabolismo , Células Vero
15.
Front Chem ; 8: 572885, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195060

RESUMEN

The coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by the severe acute respiratory syndrome coronavirus (SARS)-CoV-2. In light of the urgent need to identify novel approaches to be used in the emergency phase, we have embarked on an exploratory campaign aimed at repurposing natural substances and clinically available drugs as potential anti-SARS-CoV2-2 agents by targeting viral proteins. Here we report on a strategy based on the virtual screening of druggable pockets located in the central ß-sheet core of the SARS-CoV-2 Spike's protein receptor binding domain (RBD). By combining an in silico approach and molecular in vitro testing we have been able to identify several triterpenoid/steroidal agents that inhibit interaction of the Spike RBD with the carboxypeptidase domain of the Angiotensin Converting Enzyme (ACE2). In detail, we provide evidence that potential binding sites exist in the RBD of the SARS CoV-2 Spike protein and that occupancy of these pockets reduces the ability of the RBD to bind to the ACE2 consensus in vitro. Naturally occurring and clinically available triterpenoids such as glycyrrhetinic and oleanolic acids, as well as primary and secondary bile acids and their amidated derivatives such as glyco-ursodeoxycholic acid and semi-synthetic derivatives such as obeticholic acid reduces the RBD/ACE2 binding. In aggregate, these results might help to define novel approaches to COVID-19 based on SARS-CoV-2 entry inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA